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The energetics of an unswept wing of finite span oscillating harmonically in combined 
pitch and heave in inviscid incompressible flow are determined in closed form. The 
calculations are based on a recently developed low-frequency unsteady lifting-line 
theory. The energetic calculations for the wing consist of sectional and total values 
of thrust, leading-edge suction force, power required to maintain the wing oscillations, 
and energy-loss rate due to vortex shedding in the wake, where the latter quantity 
is only defined for the entire wing. These results are used to analyse the optimum 
motion of a wing oscillating harmonically : optimum motion minimizes the power 
input for fixed average total thrust. The optimum solution is found to be unique (at 
least for low reduced frequencies), in contrast to the two-dimensional optimum, 
which is non-unique. Numerical results are presented for the energetics and optimum 
motion of an elliptic wing. 

To understand better the structure of the known solution for the optimum motion 
of an oscillating two-dimensional airfoil, the solution is recast in terms of the normal 
modes of the energy-loss-rate matrix. It is found that one of the modes, termed here 
the ‘invisible mode’, plays a central role in the optimum solution and is responsible 
for its non-uniqueness. The three-dimensional optimum, which is unique, does not 
have an invisible mode. 

1. Introduction 
Very high efficiencies (compared with man-made vehicles) are observed in certain 

modes of animal propulsion in nature, such as bird flight and fish swimming. This 
is particularly true for high-aspect-ratio lunate-tail propulsion of many fast-moving 
fish, such as sharks and cetacean mammals, and the flapping flight of birds with 
high-aspect-ratio wings, such as gulls and albatross. Such wing and tail motions are 
typically associated with relatively high Reynolds numbers, where viscous effects are 
confined to a thin boundary layer a t  the surface and a thin trailing wake. Hence, the 
propulsive forces, which are generated primarily by the inertial forces, can be 
calculated from potential-flow theory using linearized unsteady-wing theory (for 
small-amplitude oscillations). 

Prediction of the propulsive performance of an oscillating lifting surface, involves 
calculation of the energetic quantities : thrust, leading-edge suction force, power 
required to maintain the wing oscillations, and energy-loss rate due to vortex 
shedding in the wake. The hydrodynamic efficiency of the motion is defined as the 
ratio of the rate of work of average thrust to the average power required to maintain 
the motion. An interesting related problem is to determine the optimum shapes and 

t Present address : Aerospace Engineering Department, California State Polytechnic University, 
Pomona, California 91768. 
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motions that give rise to the highest attainable hydrodynamic efficiency. This 
problem is concerned with those shapes and motions of the lifting surface that 
produce a prescribed level of thrust at  minimum energy cost in maintaining the 
motion. 

In two dimensions, the energetic quantities for a harmonically oscillating airfoil 
have been calculated by von Karman & Burgers (1935), Garrick (1936) and Lighthill 
(1970), for small-amplitude motion. Calculations for a flexible airfoil have been 
carried out by Wu (1961) and Siekmann (1962,1963) for constant forward speed, and 
by Wu (1971 a) for general transverse oscillations and variable forward speed. Chopra 
(1976) considered the cases of irregular and regular heaving motion of large amplitude 
with small-amplitude pitching motion about the local path and assumed a rigid wake. 

The only analysis of the optimum problem is the two-dimensional one of Wu 
(1971 b), who determined (i) the optimum motion of an airfoil oscillating harmonically 
in pitch and heave and (ii) the optimum shapes and motions of a harmonically 
oscillating flexible airfoil (infinite degrees of freedom). For the former he found that 
the solution is not unique, with the amplitude of heave remaining arbitrary. In the 
present work, Wu’s optimum solution for this case is recast in terms of the normal 
modes of the energy-loss-rate matrix to shed light on the structure of the optimum. 
It is found that the optimum consists primarily of one of the modes, termed here. the 
‘invisible mode ’, which is also responsible for the non-uniqueness of the solution. For 
the case of the flexible airfoil, Wu finds that the solution can be determined to a 
certain extent, but the exact shapes and motions cannot always be uniquely 
determined. 

These studies overestimate the thrust and efficiency, since they do not account for 
finite-span effects. To account for finite-span effects, Betteridge & Archer (1974) and 
Archer, Sapuppo & Betteridge (1979) used quasi-steady lifting-line theory, which 
underestimates the unsteady effects. Bennet (1970) based his calculations on the 
approximate unsteady lifting-surface theory of Reissner (1947). Chopra (1974) used 
superposition of sinusoidal lifting ribbons of infinite span for a rectangular wing in 
combined pitch and heave. His analysis is limited to the rectangular planform. 

Others have based their calculations on numerical unsteady lifting-surface theory. 
Chopra & Kambe (1977) employed the kernel-function method for a family of wing 
planforms, most of which are swept back. Lan (1979) used the ‘ quasi-vortex-lattice ’ 
method for rigid wings of rectangular and arrow planform, including a tandem wing 
configuration. Agreement between the two theories is not as good as expected and 
warrants further work on the lifting-surface approach to this problem. In three 
dimensions, there has been no analysis of the problem of optimum shapes and 
motions. This is primarily because of a lack of an adequate three-dimensional 
unsteady aerodynamic theory with closed-form results. Lighthill (1970) suggested the 
use of unsteady lifting-line theory for the study of the propulsive performance of 
high-aspect-ratio lunate tails (also applicable to high-aspect-ratio bird wings). 

In the present work, we use a recently developed linearized, low-frequency, 
unsteady lifting-line theory (Ahmadi 1980; Ahmadi & Widnall 1982, 1985) to 
calculate the (sectional and total) energetic quantities and optimum motion of an 
oscillating wing of finite span. This approach has several advantages: (i) all of the 
results are obtained in closed form, suited for optimization studies ; (ii) compared with 
lifting-surface theory, computation time is reduced substantially ; and (iii) in the 
present acceleration-potential formulation of the problem, the leading-edge suction 
force is obtained exactly (linearized and to leading order in inverse aspect ratio). The 
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FIGURE 1. (a) Schematic of the wing in unsteady motion ; (b) positive 
direction of pitch and heave for wing sections. 
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latter is in contrast with numerical lifting-surface calculations in steady and unsteady 
flows, where the suction force is obtained approximately (see Wagner 1969; Lan 
1979). 

2. Energetics of oscillating wings 
In this section, we calculate the sectional and total energetic quantities - namely 

thrust, leading-edge suction force, power required to maintain the wing oscillations, 
and energy-loss rate due to vortex shedding in the wake -for an unswept wing of 
finite span oscillating harmonically in combined pitch and heave. The calculations 
are carried out using a recently developed low-frequency unsteady lifting-line theory 
(see Ahmadi 1980; Ahmadi & Widnall 1982, 1985), whose principal results are 
summarized in the Appendix. For harmonic motion, only the time average of the 
energetic quantities enter into the results. All calculations are carried out to leading 
order in inverse aspect ratio, with errors of O(A-2). 

We consider a thin, unswept wing of large aspect ratio executing small-amplitude, 
harmonic pitch and heave oscillations in a uniform stream of inviscid incompressible 
fluid with velocity U directed along the x-axis. The wing planform is described by 
z = +c(y)/A, 191 < b,  z = 0 in a Cartesian coordinate system (2, y, z )  attached to the 
mean position of the wing (see figure l a ) .  A is the wing aspect ratio defined as 
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A = (2b)2/S,, where b is the semi-span and Sa is the wing planform area. c(y)/A is 
the semi-chord. Both b and c(y) are O( 1 ). The transverse displacements of the wing 
are described by a heaving motion of amplitude ho/A and a pitching motion about 
the mid-chord of amplitude a. a is complex to allow for arbitrary phase difference 
between pitch and heave. 

where to, El, and 6, are the non-dimensional heave/pitch amplitudes; co/A is the root 
semi-chord; j is the temporal complex unit; w is the radian frequency of oscillation; 
and t is time. It is assumed that wc(y)/CI = O(1). The heaving motion is positive in 
the z-direction and the pitching motion is positive nose down (see figure 1 b). 

2.1. Leading-edge suction force 

Thrust consists of the leading-edge suction force and a contribution from the normal 
force a t  the wing. First we calculate the suction force, which arises from the pressure 
singularity a t  the leading edge. In  three dimensions, the suction force has been 
calculated numerically using unsteady lifting-surface theory (see e.g. Lan 1979). In  
the present work, we use unsteady lifting-line theory to calculate the suction force 
analytically. 

According to lifting-line theory (see Appendix), three-dimensional effects arise a t  
each wing section from induced downwash, shown to be a convecting sinusoidal gust, 
whose amplitude and phase vary with spanwise location. Interaction of this gust with 
wing sections modifies the local two-dimensional pressure field by an amount equal 
to the pressure field of the interaction of a convecting sinusoidal gust with an airfoil, 
i.e. the Sears Problem (Sears 1941). This changes the strength of the leading-edge 
singularity and hence the leading-edge suction force. 

Formally, we calculate the suction force by applying Blasius’ theorem to a small 
circle surrounding the leading edge in the cross-sectional plane of the wing. Ahmadi 
(1980) has shown that, in the neighbourhood of the leading edge, the complex velocity 
in the aforementioned plane behaves like 

@(g,y) = C(x)-iG(x) 

where u and w are, respectively, the x- and y-components of velocity; x is the position 
vector (x,y,z); S(k) is the Sears function (see Appendix); wg(y) is the complex 
amplitude of unsteady induced downwash W, (see Appendix); = x+iy ;  i is the 
spatial complex unit (ij =I= - 1 ) ;  k = ( w / U )  c(y)/A is reduced frequency based on local 
semi-chord; and r) denotes the complex amplitude of harmonic quantities. Z0(y) is 
given by 

(3) do(y) = k 4 )  - P o @ )  + 6 A Y ) I  C(W> 

where C ( k )  is Theodorsen’s function (see Appendix) and 

6,(y) = f I’ %(x,y) cosn0 do, n = 0 , 1 , 2 ,  ... (4 ) 
0 A 
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are the coefficients of the chordwise Fourier cosine series for downwash at the wing 

m 

n - 1  

Substituting (2) in Blasius’ formula, integrating and averaging over time, we obtain 
the average suction force per unit length of the leading edge, which points along the 
outward normal to the edge and is taken positive in that direction: 

= @o+ X bn cosn0. 

(5)  
n c  

= p;;IRP, [I CZ,(Y) 12+48*(k)~0(y) ~ : ( Y ) I ,  

where p is fluid density, C) denotes time average, and RP, and ( )* respectively denote 
the real part and the complex conjugate of a complex quantity with respect to j .  Since 
all of the energetic quantities in the present work are calculated to O(A-l), in the 
derivation of ( 5 )  we have neglected a higher-order term of order I W, Iz - O ( L ~ - ~ ) .  
Numerically, E(y) is also equal to the streamwise component of the average suction 
force per unit span. Hence, average total leading-edge suction for the wing is 

We define the non-dimensional coefficients for average sectional and total suction 
force as 

(6) 

GI1 = % / [ i P W ? 8 & ) 1 ,  

where y* = y/b is the non-dimensional spanwise coordinate. 
(7) 

2.2. Thrust from the normal force 
The average value of the horizontal component of the normal force at the wing per 
unit span is given by 

where Ap = p ( z ,  y, 0 - ) - p ( z ,  y, 0 + ) is the pressure jump across the wing. For a wing 
in combined pitch and heave, (8) reduces to 

%(!I) = W j  [a*r (y ) l?  (9) 

where T(y) is the unsteady lift per unit span (see Appendix). We define the 
non-dimensional coefficients for average sectional and total thrust as 

(11) 

where p(y) = ps(y) + TJy) is the average thrust per unit span and 
total thrust for the wing. 

is the average 
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2.3. Required power 

The average power required to maintain the wing oscillations per unit span is given 
bv 
-.I 

ah F(y) = - p(y)’A Ap(x, y, t )  (x, y, t )  dx. 
J - ~ ( ~ ) / A  uc 

For a wing in combined pitch and heave, this reduces to 

where &(y) is the unsteady moment about mid-chord per unit span taken positive 
nose up (see Appendix). We define the non-dimensional coefficients for average 
sectional and total power required as 

c, = ~/[ i7VW$Sa)l ,  (15) 

where 9 is the total average required for the wing. 

2.4. Energy-loss rate 

For a wing of finite span, energy-loss rate due to vortex shedding in the wake is defined 
only for the entire wing (no sectional value). The average total energy loss rate for 
the wing 8 is obtained from the principle of conservation of mechanical energy: 

8 = 8- U T .  (16) 

We define a non-dimensional coefficient for 8 as 

c, = m7Vw$K3)1. 
The hydrodynamic efficiency for the motion is defined as 

2.5. Numerical examples 

Next, we present numerical examples for the above three-dimensional calculations 
of the energetic quantities for an oscillating wing. The examples demonstrate the 
influence of finite span on the energetic quantities and hydrodynamic efficiency for 
an oscillating elliptic wing. In  each case, the corresponding strip-theory result (ST) 
is also shown for comparison. The energetic quantities for the heaving and the 
pitching.wings are, respectively, normalized by 6; and 6: (see (1)). Numerical schemes 
for the calculation of finite-span effects are given in Ahmadi (1980). 

Figure 2 shows the spanwise distribution of average required power for an elliptic 
wing ( A  = 8) in pitch for k, = 0, 0.1, and 0.3, where k, = ( w / U )  co/A is the reduced 
frequency based on root semi-chord. The three-dimensional results are denoted by 
ULLT (unsteady lifting-line theory). Because of the influence of induced downwash, 
which reduces the amplitude of unsteady section lift and moment, the three- 
dimensional theory predicts less power required for maintaining the motion than does 
the strip theory. It is also seen that the required power grows with increasing reduced 
frequency k,, as expected. 

Figure 3 shows the spanwise distribution of the average leading-edge suction force 
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FIGURE 2. Spanwise distribution of required power for an elliptic wing 
in pitch, A = 8; ---, ST; -, ULLT. 
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FIQIJRE 3. Spanwise distribution of leading-edge suction force and thrust for an 
elliptic wing in heave, A = 8;  ---, ST; -, ULLT. 

for an elliptic wing (A = 8 )  in heave. Finite-span effects also reduce the suction force 
because induced downwash generally opposes the flow around the leading edge, and 
thus reduces the strength of the leading-edge singularity. The small region of negative 
suction force near the tip for k, = 0.3 in figure 3 is a result of neglecting a higher-order 
term of order I W, l2 - O(A+) in deriving the suction force, (5). Retaining this 
higher-order term will resolve the problem, since the amplitude of unsteady induced 
downwash I W,l can become quite large near the tip, especially at higher reduced 
frequencies k, (see figure 5 of Ahmadi & Widnalll985). However, the accuracy of the 
results, O( A-2) ,  would be inconsistent with that of the other energetic quantities 
which are calculated to O(A-l) .  Furthermore, since the suction force tends to zero 
at the tip and since the region of negative values is very small (about 1 yo of semi-span 
at k, = 0.3), the effect of this on the total thrust is negligible. 

Since for a heaving wing all of the thrust is contributed by the suction force, 
figure 3 also represents the spanwise distribution of average thrust for an elliptic wing 
in heave. Figure 4 shows the spanwise distribution of average thrust for a pitching 
wing. However, in the range k, = 0 to 0.3, the pitching wing produces negative thrust 
(i.e. drag), which is consistent with the known two-dimensional result. In the 
steady-flow limit, we obtain one half the steady induced drag. This factor of one half 
arises from time averaging, which is not meaningful in steady flow. Furthermore, 
because of the additional drag associated with the trailing vorticity, the three- 
dimensional unsteady drag is larger than that predicted by the strip theory. As 
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FIGURE 4. Spanwise distribution of section thrust (drag) for an elliptic 
wing in pitch, A = 8;  ---, ST; 7, ULLT. 
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expected, all of the three-dimensional results approach their strip-theory counter- 
parts with increasing reduced frequency ko. 

The next example shows the overall propulsive performance of an elliptic wing in 
combined pitch and heave. It is convenient to present these results in terms of 
Lighthill’s (1970) description of wing displacements, namely 

where h, and a, are real with respect to j and denote, respectively, the amplitudes 
of heave and pitch. The phase difference between the two modes of oscillation is fixed 
at 90°, but the position of the axis of pitch, x = b,, z = 0, is variable. Lighthill’s 
description is completely equivalent t.o the present one (see ( 1 ) )  with the interrelations 

where Z ,  and ap are, respectively, the amplitude ratio and the phase advance of pitch 
with respect to heave in the present notation : 

z, = (t: + 63: , a, = tan-l(?). 
E O  

Furthermore, Lighthill’s ‘ proportional feathering parameter ’ 8, = UaL/(whL), which 
is a measure of the deviation of the wing slope from the tangent to the path traversed 
in space by the pitch axis, is given by 

UP 0, = - 22, cosec -. 
k0 

We use the above relations to express the results of the present calculations in terms 
of Lighthill’s parameters. 

Figure 5 shows the thrust coefficient C ,  and the hydrodynamic efficiency 9 for an 
elliptic wing ( A  = 16) in combined pitch and heave in terms of Lighthill’s parameters. 
The axis of pitch is at  f of root chord and a range of values of the feathering parameter 
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FIQURE 5. Thrust coefficient and hydrodynamic efficiency for an elliptic wing of A = 16 for several 
values of feathering parameter with axis of pitch@ated at 4 of centre section chord; ---, ST; -, 
ULLT. 

0, are considered. Also shown are the corresponding strip-theory results,t which 
closely resemble the two-dimensional results of Lighthill (1970), with 7 tending to 
100 as ko+O for all 8,. We note that, as ko+O, all configurations with 8, =+ 0 tend 
to pure heaving motion as can be seen from the alternative form of 8,, 

Figure 5 shows that finite-span effects reduce 7 below the strip-theory values and 
7 no longer approaches 100% in the steady limit, owing to the presence of trailing 
vorticity. The approximate range of applicability of the lifting-line theory for A = 16 
is indicated in the figure (see figure 18 of Ahmadi & Widnall 1982). 

The rest of this paper is devoted to the analysis of the optimum-motion problem. 

t Non-dimensional coefficients for the strip theory are independent of aspect ratio. 
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3. Optimum motion of an oscillating airfoil 

The general problem of determining the optimum shapes and motions of an 
oscillating lifting surface of fixed planform may be stated as follows: from within a 
prescribed class of shape functions z = h(x, y, t ) ,  find the one that minimizes the power 
input for fixed average thrust. 

Before considering the three-dimensional optimum, we first recast the known 
two-dimensional optimum for an airfoil in combined pitch and heave (Wu 1971 b)  in 
terms of the normal modes of the average-energy-loss-rate matrix. This sheds light 
on the structure of the two-dimensional optimum and is also helpful in understanding 
the three-dimensional optimum. The airfoil motion is described by : 

z = h(z ,  t )  = [ t c t ,  + (El + j6,) 23 dot (I x I < c ) .  (23) 

The average value of the energetic quantities, i.e. energy-loss rate, power required, 
thrust and leading-edge suction force, are, respectively, denoted by E ,  P, T, and z, 
or in non-dimensional form by 

_ _ _  

c, = E / [ i n p V c ] ,  (24) 

c, = P/[&d7%], (25) 

CT = F / [ i n p p c ] ,  (26) 

CTs = Fs/[inp u c ] .  (27 1 

cE = g T e ,  (28) 

(7, = FTR, (29 1 

In  matrix notation, the corresponding quadratic forms are given by 

cTs = gTKg, (31) 

where ( )* denotes the transpose of a matrix and gT = {to, El, 6,). E, P, T and K, the 
matrices of the quadratic forms, are given in Wu (1971 b ) . t  

The optimum problem then is to minimize the quadratic form C, subject to  the 

(32) 
constraint 

Wu has pointed out that  application of variational methods to this problem fails to  
yield the optimum because the quadratic form C,  is singular,$ since one of the three 
eigenvalues of E is identically zero. The quadratic form C,  must first be reduced to  
a non-singular one of a lower order, which is then tractable by the usual variational 
methods. Wu’s analysis shows that 6, is a free parameter in the problem and hence 
the solution is non-unique. CT,,  = CT,, /6; ,  termed the proportional loading parameter 
by Wu, is likewise a free parameter in the problem. 

The normal modes of E, in terms of which we will recast the solution, are given 
by (in normalized form) 

c, = CT, ,  > 0. 

(33) 1. I 1:; 
(4 + F) (4 + 2k2) 

+1 = [(4+k2)(4+2k2)]3 

t These are also obtained from the three-dimensional results of the preceding section after 

$ C, is indefinite in both two and three dimensions. 
replacing CIA by c and setting the induced downwash W ,  = 0. 
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where k = w c / U  is the reduced frequency. The first and third modes consist of 
combined pitch and heave motion, whereas the second mode represents pure pitching 
motion. The first mode has some interesting properties and plays a central role in 
the present optimum solution. We discuss its properties in some detail. 

It can be shown that, for 5 = &, 
c, = cp = CT = 0. (36) 

+1 is, in fact, the same as the special set of values {to, &, &} of Wu (1971 b), who points 
out that this set corresponds to zero circulation around the airfoil, whereby no 
vorticity is shed in the wake. We refer to +1 as the ‘invisible mode’, since it does not 
contribute to the average value of the energetic quantities and produces no wake 
vorticity. It must be noted, however, that, although the average thrust is zero, 
because of the unsteadiness of the airfoil motion, the leading-edge suction force and 
the thrust from the normal force are generally both non-zero (Tp = -q + 0). 
Furthermore, although the unsteady lift and moment are generally non-zero because 
of added mass effects, the average rate of work done by the airfoil P i s  zero. 

Wu (1971 a) has shown that for an oscillating airfoil C, cc I l2 and 
C, cc (&o+61), where 6, is defined in (4). It follows that the hydrodynamic efficiency 
of the invisible mode is 100 yo. This is analogous to the Froude efficiency of a propeller, 
which tends to 100 % as the disk loading vanishes. However, since the invisible mode 
violates the conditions of fixed positive thrust (32), it, by itself, does not constitute 
the optimum. 

As k -t 0, the invisible mode tends to perfect geometric feathering, where the airfoil 
pitching motion is such that the airfoil stays tangent to the path traversed in space 
by the heaving motion of the pitch axis. Analogously, in a time-averaged sense, the 
invisible mode can be thought of as perfect unsteady feathering, since it sheds no 
vorticity in the wake, requires the least amount of power to maintain the airfoil 
motion, and produces zero average thrust (or drag). 

When the amplitude ratio and phase advance of pitch relative to heave, Z ,  and 
up, and the hydrodynamic efficiency 7 for the invisible mode are plotted and 
superimposed on those for the optimum motion of the airfoil (Wu 1971 b), they are 
found to form an upper envelope for the family of optimum solutions (CT,,, is the free 
parameter). With decreasing cT,o and/or increasing reduced frequency k, all optimum 
solutions approach the invisible mode. The invisible mode thus plays a central role 
in the optimum solution. This is discussed formally in the next section. 

3.1. Recast form of the optimum solution 

In  order to understand better the structure of the optimum and the role of the 
invisible mode in it, we recast the solution in terms of the normal modes of the 
energy-loss-rate matrix E. Denoting the optimum solution by p*, we set 

3 
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where the weighting functions yi indicate the amount of each of the modes present 
in c*. +i are given in (33)-(35). To determine yi, we premultiply both sides of (37) 
by Cp? and use the orthogonality property +?Cpt = Sij to obtain 

yj = +?S*, j = 1 , 2 , 3 ,  (38) 

where Stj is the Kronecker delta function. 

y3 because, as mentioned earlier, to is arbitrary. Thus, we find 
The three equations in (38) determine only two of the three functions y l ,  y2,  and 

and rewrite (37) as 

5* = Yl[+l+@+2+(;)+3]7 

where we have chosen the amount of the invisible mode y1 to  be the free parameter 
rather than 5,. The reason for this choice will become clear later. Accordingly, we 
replace the proportional loading parameter cT,o with a modified loading parameter 
(?T,o = CT, , / y ;  which is related to  the former through 

The amounts of the second and third modes, relative to  the invisible mode, present 
in the solution, are shown in figures 6 and 7. The lines denoted by k = k, and k = k, 
represent, respectively, the value of k below which no optimum exists and the value 
of k for which the fraction of thrust contributed by the leading-edge suction force 
is a minimum. Herein, we refer to tho  optimum for k = k, as ‘superoptimum,’ since 
in reality large leading-edge suction force is generally associated with leading-edge 
stall. 

In  figures 6 and 7,  i t  is seen that, in general, with decreasing 6T,o and/or 
increasing k, both y2/y1  and y3/y1 decrease and the invisible mode increasingly 
dominates the solution. Figure 8 depicts t?T,o as a function of k and cT,o. We note 
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FIQURE 7. Amount of the third mode relative to the invisible mode for the 
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that, for small values of cT,o and k, c:T,O x GT,?. This is because, under these 
conditions, the solution is dominated by the invisible mode, which tends to pure 
heave as k+O (see (33)). 

Thus the optimum consists primarily of the invisible mode with a small amount 
of the third mode (of the order of 10%) and an even smaller amount of the 
second mode (of the order of 1 yo). The invisible mode is responsible for the high 7 
achieved by the optimum, whereas the other modes are necessary to attain the 
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prescribed level of thrust. The superoptimum achieves higher 7 at lower values of 
cT,,. From the recast form of the optimum, it becomes clear that the reason for the 
non-uniqueness of the present solution is the invisible mode, an arbitrary amount 
of which (yl) is present in the solution. 

Strictly speaking, the recast results should be presented with t?T,o as a parameter 
rather than 6T,o. However, since there is a one-to-one correspondence between 5, 
and y1 (see (41)) and hence also between CT,o and t?,,, (see figure 8)) the above 
presentation is adequate. 

4. Optimum motion of an oscillating wing 
In this section, we use the three-dimensional energetic quantities of $2 to determine 

the optimum motion of a high-aspect-ratio wing oscillating harmonically in combined 
pitchand heave (see figure i).Thewingmotionisdescribed by (l).Theuseoflifting-line 
theory restricts the analysis to wings of large aspect ratio and slender planform 
oscillating at relatively low reduced frequencies. 

In matrix notation, we represent the average total energetic quantities for the finite 

(43) 
wing as 

C8 = gTdPg, 

where 8, 9, 9, and .X are the respective matrices of the quadratic forms for 
(average) total energy-loss rate, total required power, total thrust, and total 
leading-edge suction force. They are symmetric by construction and have the 
additional properties Qzz = Qa3 and Q Z 3  = 0, where Qu is the matrix element (i, j). 

Here, as in two dimensions, the quadratic form C,  is indefinite and it is crucial 
first to identify what type of quadratic form C,  is. To this end we temporarily adopt 
the strip-theory viewpoint and investigate the possibility of distributing two- 
dimensional invisible modes across the span. It can be shown that the invisible mode 
at  spanwise station y is given by 

Here, the right-hand sides are functions of y because k = wc(y)/( UA), but the left-hand 
sides are independent of y, since the wing is rigid. Therefore (47) can be enforced 
at one or, at most, a finite number of stations y, depending on the planform shape, 
but not a t  all y.t  Wherever (47) is violated, spanwise vorticity is shed, and the 
circulation is non-zero and varies with y, which gives rise to trailing vorticity. 
Including the three-dimensional effects modifies this picture slightly, but, since the 
corrections are of higher order, the basic picture remains the same. This means that 
no non-trivial unsteady motion of a rigid wing exists that does not produce a wake 
of vorticity. In  other words, no invisible mode for the rigid wing of finite span exists 
and C, is positive definite. 

The three-dimensional optimum may be stated as: minimize the quadratic form 
C, subject to c, = Cy,o > 0. 

t We exclude the rectangular planform from consideration, because of blunt wingtips. 
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As in two dimensions, this is equivalent to  minimizing a new function C> = C,- AC, 
subject to  the same condition, h being a Lagrange multiplier. Denoting the elements 
of 8 and B by Et, and Pdj respectively, we have 

(49) 

(50) 

‘8 = Ell + ‘22(6:  + <:) + 2E12 60 61 + 2E13 60 529 

c, = p115; + p22(5: + 6:) + 2p12 Eo 51 + 2p13 50 5 2 .  

Since C,  is positive definite, the optimum is obtained by the use of the usual 
variational methods. Thus we set 

(51) 

(52) 

I8-ABI = 0 (53) 

a 
a5i 
-(Cs-AC,) = 0, i = 0,1,2,  

c, = c,-c, = cF,o > 0. 

A is the solution of the cubic secular equation 

Or (E22-AP22) [(Eli -A<,) ( E 2 2 - A & 2 )  - ( E I ~ - A % ~ ) ~ -  (E13--hP,3)21 = 0. (54) 

The root A, = E2,/P,, corresponds to pure pitching motion, which is not the optimum. 
The remaining roots, A, and A,, are the solutions of the quadratic equation 

aA2+bA+c = 0,  (55) 

(56) I where a = < 1 & 2 - e 2 - - e 3 >  

= 2E12<2+2E13<3-E11<2-E22<17 

c = Ell E2, - E:2 - E:3. 

A,  and A, would be real, as required for physically meaningful solutions, if b2 -4.m 2 0. 
Substituting A in (51), we obtain 

E l  - E,,-AP,2 
t o  E22-A<2’ 
--- 

6 2  - --- 
50 E22 - A<,‘ 

(57) 

The hydrodynamic efficiency is given by 

The A corresponding to the larger r/ (0 < 7 < 1) is the optimum. f is then obtained 
from the condition (52) : 

I n  analogy with the two-dimensional optimum, we may rewrite this as an expression 
for the proportional loading parameter c,, = CF, o/E$ It is important to  note that, 
in contrast with the two-dimensional case, the present optimum solution is unique 
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FIQURE 9. Hydrodynamic efficiency, proportional loading parameter and location of pitch axis for 
the optimum motion of an oscillating elliptic wing; -, ST; ---, A = 16; ---, A = 8. 

(at least for low reduced frequencies). This is a direct result of C,  being positive 
definite. 

The amplitude ratio and the phase advance of pitch relative to heave are obtained 
from (21). The fraction of thrust coming from the leading-edge suction force is given 
hv 

where Kij  denotes the elements of N (see (46)). To understand the optimum better, 
i t  is helpful to  express the solution in terms of Lighthill's (1970) alternative 
description, ( 19). 

Results for the optimum are obtained from the three-dimensional energetic 
quantities of $2 and the above analysis. Figures 9-1 1 show the optimum motion for 
an elliptic wing. Calculations are carried out for 0 < k, < 1 and A = 8 and 16. 
Strip-theory calculations (W, = 0) are also shown for comparison. For each aspect 
ratio, the results are cut off a t  the value of k, corresponding to  the approximate range 
of applicability of the lifting-line theory a t  that  A (see figure 18 of Ahmadi & Widnall 
1982). It is seen that, with increasing A ,  the three-dimensional results approach the 
corresponding strip-theory values as expected. Figure 9 (a) shows that the highest 7 
is achieved by the strip-theory case. This is due to  the absence of induced downwash, 
which normally increases C,, decreases C,, and hence reduces 7 = 1 -C,/C,, as 
pointed out earlier. 

Figures 9 ( b )  and ( c )  show the optimum motion in terms of Lighthill's parameters. 
We note that the optimum position of the pitch axis is a t  about 73 % root chord and 
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FIGURE 10. Proportional loading parameter for the optimum motion of an oscillating elliptic 
wing; -, ST; ---, A = 16; ---, A = 8. 
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FIGURE 11.  Ratio of leading-edge suction force to thrust for the optimum motion of an 
oscillating elliptic wing; -, ST. , A = 16. --- A = 8. 
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Path of pitch axis 

Relative wind 

FIGURE 12. Sinusoidal motion of a flat-plate airfoil under quasi-steady condition, (a) 8, = 0, pure 
heave, P >  0; ( b )  0 < 8, < 1, T >  0 ;  (c) 8, = 1 ,  perfect geometric feathering, F =  0; (d )  8, > 1, 
P< 0. 

remains fairly constant with increasing k,. In  relation to 8,, we recall that 0,  = 0 
and 8 ,  = 1 represent pure heave and perfect geometric feathering, respectively. To 
understand better the behaviour of 8, for the optimum, we first consider the 
two-dimensional quasi-steady case, where for positive average thrust 0 < 0,  -= 1 ; for 
zero average thrust 8,  = 1 ; and for negative average thrust 0, > 1. These ideas are 
depicted schematically in figure 12. We recall that, in quasi-steady flow, thrust is just 
the horizontal component of lift. 

In three dimensions, the induced downwash normally reduces the effective 
incidence of wing sections, thereby reducing the thrust. In order to restore the thrust, 
we increase the effective incidence of the wing by lowering eL further below unity. 
This, on the one hand, represents a greater angular deviation of the wing from 
geometric feathering in the direction of positive thrust (0 < 0, < 1)) and, on the 
other, is a reduction in pitch amplitude (measured from the horizontal). We see the 
same trend in figure 9 ( b ) ,  where 8, for cases of finite span are farther below unity 
than the strip-theory values. Presumably, the same trend holds at higher k, (as seen 
in figure 9 b )  where the problem is more complex owing to unsteady effects. 

Figure 10 shows that, with decreasing aspect ratio, the proportional loading 
parameter increases. Since C,, , is prescribed, figure 10 is to be interpreted as giving 
5, (non-dimensional heave amplitude), which decreases with decreasing A and/or 
increasing k,. It is thus seen that, with decreasing A, both pitch and heave amplitudes 
are reduced. Furthermore, the behaviour of 8, in figure 9 ( b )  indicates that the 
amplitude of pitch is reduced more than that of heave (non-dimensional). 

From the above considerations, the three-dimensional optimum can be described 
as follows. Compared with the strip-theory case, the wing of finite span oscillates with 
smaller heave amplitude because, for fixed k,, the larger the heave amplitude, the 
stronger the trailing and shed vorticity and unsteady induced downwash, tending to 
reduce 7. With the smaller heave amplitude, the question is raised as to how the wing 
maintains the prescribed level of thrust. The answer lies in the pitch amplitude, 
which, measured from the position of perfect geometric feathering (8,  = l) ,  is 
increased in the direction of increasing thrust (8, < I ) .  

Figure 11 shows that the fraction of thrust from the leading-edge suction force 
decreases with decreasing A because induced downwash increases, reducing the 
suction force. In  contrast to the two-dimensional optimum, in three dimensions there 
is no superoptimum (except for a trivial solution at  k, = 0). Figure 11 shows that 
the range of k, where C,JC, is acceptably small (to avoid leading-edge stall) is not 
very large. For example for (Crs/CF) < 40 %, k, 2 0.2,  which is a somewhat small 
range. Leading-edge sweepback reduces CYs/C, and thus increases the range of k, 
for which C,JC, is acceptably small (see Chopra & Kambe 1977). 
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In summary, we have the following differences between the two- and three- 
dimensional optimum solutions. The three-dimensional optimum is unique while the 
two-dimensional one is non-unique. The numerical examples considered show no k, 
and k,  for the three-dimensional optimum. Hence, in contrast with the two- 
dimensional case, in three dimensions there is no superoptimum and the solution 
seems to exist for all reduced frequencies (at least for low reduced frequencies). The 
above differences also make questionable Wu’s (1971 b) strip-theory application of the 
two-dimensional optimum to a three-dimensional wing. 

We end this section with some comments on the optimum-shape problem for a 
flexible wing. In  particular, we consider the semi-flexible wing defined by 

Here, it is best to assume a number of suitably chosen spanwise modes for each of 
to@), tl(y), and t2(y). The unsteady lifting-line theory can then be used to calculate 
the energetic quantities needed for optimization, as in 52. Here, C,  is indefinite. To 
determine the type of the quadratic form C,, we again temporarily adopt the 
strip-theory viewpoint and investigate the possibility of distributing two-dimensional 
invisible modes across the span. 

It can be shown that the invisible mode at spanwise station y is given by 

Since, for the semi-flexible wing, (&), &(y) and t,(y) are arbitrary functions of y, (63)  
can be maintained at every spanwise station y. Then, sectional thrust and power 
required as well as the circulation r ( y , t )  will be identically zero across the span. 
Hence, no spanwise or streamwise vorticity will be shed from the wing. This means 
that, for the semi-flexible wing described by (62) ,  there exists a non-trivial unsteady 
motion defined by (63) ,  for which C, = C ,  = C ,  = 0 and T(y, t )  = 0. That is, there 
exists an invisible mode, and C, is positive semi-definite. Therefore, the optimization 
requires that the singular quadratic form C, first be reduced to a non-singular one 
of a lower order which can be handled by the usual variational methods. The resulting 
optimum solution will be non-unique. 
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Appendix 
This appendix summarizes the principal results of the unsteady lifting-line theory 

used in this paper (Ahmadi 1980; Ahmadi & Widnall1982, 1985). The theory treats 
a spanwise flexible unswept wing of large aspect ratio oscillating at low reduced 
frequency in inviscid incompressible flow. The linearized theory is formulated in terms 
of the acceleration potential @(x, t )  = [p, - p ( x ,  t ) ] / p  and solved by the method of 
matched asymptotic expansions, which reduces the problem from a singular integral 
equation to quadrature. For prescribed wing shapes and motions, the theory yields 
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the complete pressure field, airloads (chordwise and spanwise pressure distributions) 
and unsteady induced downwash in closed form. 

The theory is developed for a wing whose planform shape is given by x = & c(y)/A, 
I y l  < b,  z = 0, and whose transverse displacements are described by (see figure 1) 

The theory shows that finite-span effects arise from unsteady induced downwash 
W,, which is shown to be a convecting sinusoidal gust 

whose complex amplitude vg(y) is given by 

+2jw rzD(y) { 1 -y- j+n-log,u0-+ log4 1 - - [ ( 3 ' 1 } } 9  (A3) 

where rzD(y) is the two-dimensional unsteady section lift (see below); W = o / U ;  
y = 0.577.. .is the Euler constant ; ,uo = wb is the reduced frequency based on the 
semi-span; $denotes the principal value of an integral in the sense of Hadamard (see 
Mangler 1951); and C(7) is the kernel function of unsteady lifting-line theory: 

.@) = ,u{K,(~c) +j+N4(,u)-Ll(p)l}. (A 4) 

11, K,,  and L, are, respectively, modified Bessel functions of the first and second kind 
of order one and modified Struve function of order one. 

Interaction of this induced sinusoidal gust with wing sections modifies the local 
two-dimensional pressure field $zD by an amount equal to the pressure field of the 
interaction ofa convecting sinusoidal gust with an airfoil $sears, i.e. the Sears problem 
(Sears 1941). The pressure field of the wing is given by 

( A  5) 
where (*) denotes variables magnified by the aspect ratio. These are appropriate in 
the 'inner region', i.e. distances from the wing of the order of chord c(y)/A, as 
A + co (see Ahmadi 1980). 

In  the neighbourhood of the wing, the last two terms on the right of (A 5) cancel 
and the wing-pressure distribution A@(x, y) = I,&$, y, 0 + ) - $($, y, 0 - ) is given by the 
sum of @2D(2) and Gsears(2), both of which are obtained from the unsteady airfoil 
theory of Wu (197 1 a).  They are given by 

(A 6)  
where IP, denotes the imaginary part of a complex quantity with respect to  the 
spatial complex variable i ,  
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1 
B l ( y )  = - U2k2a, 

2c2 

and $Sears($) = IP, {V%(Y) S ( k )  [h-11), (A 8) 
where k = Gc(y)/A is the reduced frequency based on the local semi-chord. S ( k )  is 
the Sears function (Sears 1941) : 

S ( k )  = jJ,(k) + [J,(k) -IJl(k)l C W  

C(k )  is Theodorsen's function (Theodorsen 1935) : 

Hi2) ( k )  
Hi2)(k) + jHp) (k )  

C ( k )  = 

where H(,2)(z) = J,(z) - j Y,(z) is the Hankel function of the second kind of order n, 
and Y, are respectively Bessel functions of the first and second kind of order n. 

Similarly, section lift and moment are given by 

= [2D(Y) + &ears(Y), *(Y) = f i 2 D ( Y )  +*Sears(Y), (A 11)  

where 

are the familiar two-dimensional unsteady lift and moment for an airfoil in combined 
pitch and heave, and 

are the corresponding three-dimensional corrections (lift and moment of the Sears 
problem). 

Lifting-line theory requires the wing planform shape, i.e. c(y), to vary slowly in 
the direction of the span. Blunt wingtips (e.g. rectangular planform) are thus 
excluded. They require additional local analysis near the tip. However, for elliptic 
and more-slender tip geometries, the theory yields convergent results. 

Further details of the lifting-line theory and numerical schemes for calculating the 
finite-span effects are found in Ahmadi (1980). 
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